Time : 3 Hours

Second Semester B.Sc. Degree Examination, May/June 2019

(CBCS Scheme)

Mathematics

Paper II — MATHEMATICS

Instructions to Candidates : Answers **ALL** questions.

PART - A de a guota s ai II (a) . 8

Answer any **FIVE** questions:

[Max. Marks: 70

- Let * be an binary operation on the set of real numbers R defined by a*b=a+b-7, $\forall a,b \in R$. Is * is commutative?
- Prove that in a group (G, *), $(a^{-1})^{-1} = a$, $\forall a \in G$.
- (c) Find $\frac{dS}{dx}$ for the curve $y^2 = 4ax$.
- Find the polar subnormal for the curve $r\theta = a$. (d)
- Find the asymptotes parallel to the coordinate axes for the curve $xy^3 - x^2y = x^2 + 1.$
- Find the arc length of the curve $y = c \cos h\left(\frac{x}{c}\right)$ from x = 0 to x = a. (f)
- Show that the equation (g)

$$(x^2 - 2xy + 3y^2) dx + (y^2 + 6xy - x^2) dy = 0$$
 is exact.

Solve: $p^2 - 5p + 6 = 0$, where $p = \frac{dy}{dx}$. (h)

PART -B St. 108 A TRANSPORT -B ST. 108 A TRAN

Answer ONE full question:

(1 × 15 = 15)

Q.

- 2. (a) If (G, *) is a group, then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$, $\forall a, b \in G$.
 - (b) Show that the set $G = \{0, 1, 2, 3, 4, 5, 6\}$ is an abelian group with respect to addition modulo 7.
 - (c) For the set $A = \{1, 2, 3\}$, where $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ then show that $(f \circ g)$ is the identity element and find $(f^{-1} \circ g^{-1})$.

Or

- 3. (a) If in a group G, $(ab)^2 = a^2b^2$, $\forall a, b \in G$. Prove that G is abelian.
 - (b) Show that the set C of all complex numbers is a group under addition of complex numbers.
 - (c) Show that $H = \{1, 2, 4\}$ is a subgroup of the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.

PART - C

Answer any TWO full questions:

 $(2 \times 15 = 30)$

- 4. (a) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$ for the polar curve $r = f(\theta)$.
 - (b) Find the radius of curvature at a point t on the curve $x = a \cos^3 t$, $y = a \sin^3 t$.
 - (c) Find the Pedal equation of the curve $r^2 = a^2 \cos 2\theta$.

Or

- 5. (a) Find the envelope of the family of straight lines $y = \alpha x + \frac{\alpha}{\alpha}$ where α is a parameter.
 - (b) Show that the curves $r = a(1 + \sin \theta)$ and $r = b(1 \sin \theta)$ intersect orthogonally.
 - (c) Prove that with usual notations, the radius of curvature of the curve x = f(t), y = g(t) is

$$\rho = \frac{\left[(\dot{x})^2 + (\dot{y})^2 \right]^{\frac{3}{2}}}{\left[\dot{x} \ \ddot{y} - \dot{y} \ \ddot{x} \right]}$$

Q.P. Code: 11223

0000

6. (a) Find all the asymptotes of the curve

$$2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy - 4x + 1 = 0.$$

- (b) Find the evolute of the parabola $y^2 = 4ax$.
- (c) Find the position and nature of the double points of the curve $y^2 = x^2(x-1)$.

Or

- 7. (a) Find the perimeter of the cardioids $r = a(1 + \cos \theta)$.
 - (b) Find the surface area of the solid generated by revolution of the curve $x = a \cos^3 t$, $y = a \sin^3 t$ about the x-axis.
 - (c) Find the volume generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about x-axis.

PART - D

Answer ONE full question:

 $(1 \times 15 = 15)$

- 8. (a) Solve: $\frac{dy}{dx} y \sec x \ x = y^3 \tan x$
 - (b) Solve: $p^2 + 2py \cot x y^2 = 0$
 - (c) Find the orthogonal trajectories of the family of parabolas $y = ax^2$, where a is a parameter.

Or

- 9. (a) Solve: $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{1}{(1+x^2)^2}$
 - (b) Verify for exactness and solve (ax + hy + g) dx + (hx + by + f) dy = 0.
 - (c) Find the general and singular solution of $\sin px \cos y = \cos px \sin y + p$.